Velsicol Chemical Plant Site Briefing

June 27, 2012

Velsicol Site

Michigan Chemical Operations

Michigan Chemical Company (1939 to 1978)

- Owned by Velsicol Chemical Corporation starting in 1965
- Manufactured variety of chemicals
- Accidental mixing of PBB with animal feed in 1973
- 1978 Plant Closure
- 1982 Consent Judgment

1982 Consent Judgment Remedy

- USEPA and State of Michigan entered Consent Judgment with Velsicol in 1982
- Included limited release from liability
- 52-acre plant site was demolished and contained with a slurry wall and clay cap
 - Consolidated waste material from Former Burn Area under cap
 - Completed by 1986

Bankruptcy Settlement

- 1999 complicated bankruptcy filing
- 2002 settlement vested title to site property in newly established bankruptcy trusts
- Trusts currently hold title to property and settlement proceeds. Of those proceeds approximately \$6M are available to US EPA.

8 years

 670,000 cubic yards stabilized sediment disposed at licensed landfills

\$100,000,000

Two different types of DNAPL

- "Hot Spot Cell" DNAPL
 - Primarily DDT with chlorobenzene
- "Area 3" DNAPL
 - High percentage of bromine determined from elemental analysis
 - Approximately 70 mg/kg total VOCs in associated groundwater

Remedial Investigation Summary

- 1982 remedy not functioning as designed
- Containment system evaluation (cap, slurry wall, till)
- 163 monitoring wells
- 467 soil borings
 - 7 rounds of groundwater monitoring for RI
 - Residential Well Sampling
 - Adjacent and Nearby Properties
 - \$8,000,000

Former Plant Site - Soil

Study Area Cross Section

Velsicol Groundwater Contamination

Shallow Outwash and Upper Till Unit

	Number	Number	Maximum Concentration	
Analyte	Collected	Detected	(ug/L)	
1,2-DCA	267	92	530,000	
Benzene	267	166	99,000	
Chlorobenzene	267	134	190,000	
Trichloroethene	267	82	3,600	
Vinyl Chloride	267	69	710	
4,4-DDT	243	94	13,000	
PBB	244	26	3.3	
pCBSA	164	104	1,300,000	
				Extent of Groundwater Contamination (organic compounds)

Lower Till Unit and Upper Lower Outwash

	Number Collected	Number Detected	Maximum Concentration (ug/L)	
1,2-DCA	57	9	440	
Benzene	57	11	1,800	
Chlorobenzene	57	6	170,000	
4,4-DDT	57	6	17,000	
pCBSA	59	29	1,600,000	
				SUBSTAN. NORMAN. NORMAN. NORMAN.
				Legend Extent of Groundwater Contamination (organic compounds)
DE		BRA	WASHINGTON OF THE BASE	10 A SC 2000 50 CP Tracked 200 Processor 200

City Well Intake Zone 1

City Well Intake Zone 2

NAPL / DBCP Areas and Potential Source Areas

Adjacent Residential Neighborhood

Remedial Action

For the nearby residential properties adjacent to the former chemical facility:

- Phase 1 remediate 10 homes with PBB and DDT contamination in 2012
 - Phase 2 additional cleanup of 50+ homes

Remedial Action

For the former Velsicol Chemical facility:

- in-situ thermal treatment of DNAPL/DBCP principal threat waste soil areas;
- excavation and off-site disposal of principal threat waste soils;
- in-situ chemical oxidation for source area groundwater;
- replacement of the City of St, Louis municipal drinking water supply;
- installation of vertical barrier and perimeter drain surrounding site;
- installation of new groundwater/DNAPL collection trench;
- installation of DNAPL collection sump
- groundwater pump and treatment;
- installation of RCRA Subtitle C compliant cap;

Residential Neighborhood Soil Excavation

- Ecological and human health
- DDT, PBB, TRIS
- Soil excavation of
- approx. 40,000 CY
- Property
 owners/residents
 included in
 planning

City Water Supply Replacement

- Assumed replacement of City well field with new
- Formation of joint water authority with Alma
- Exemption 5: DP
- Cost savings for groundwater pump and treat
- Would address risk to City water users

DNAPL Recovery

- Existing DNAPL collection system
- New DNAPL trenches, as needed
- Deep DNAPL recovery sump

DBCP = 1,2-dibromo-3-chloropropane GWCS = Groundwater collection system NAPL = Non-aqueous phase liquid

Site Restoration Plan

- Re-grade Site
- Seed and mulch
- New on-Site groundwater treatment plant
- Redevelopment possible
- Include community in reuse planning

Conceptual design shown for FPS-2, FPS-3, and FPS-5

Groundwater Monitoring

City Well Screened in City Well Intake Zone 2

- Existing monitoring network in place
- Optimize
- New monitoring plan will be developed
- Ensure remedy remains protective
- Review protectiveness at least every 5 years

Existing groundwater well monitoring network

Containment Elements

- Vertical barrier
- Perimeter drain
- Existing NAPL/GWCS
- New NAPL trenches, if needed
- Engineered cap

NAPL = Non-aqueous phase liquid GWCS = Groundwater Collection System

Vertical Barrier

slurry wall

- Containment of bank material
- Prevent off-site migration of contamination
- Primarily for shallow outwash unit

Perimeter Drain

WTP = (ground)Water treatment plant

- Groundwater collection trenches and sumps
- Installed interior to slurry wall around Plant Site perimeter
- Installed above till unit
- Control of water levels inside containment unit
- Maintain inward hydraulic gradient
- Treatment at WTP

Existing NAPL Trenches

NAPL = Non-aqueous phase liquid WTP = (ground)Water treatment plant

- NAPL/groundwater collection trenches and sumps
- New trenches and sumps, if needed
- Installed exterior to slurry wall and river bank
- Installed within the top of the till unit where NAPL was observed
- Collects NAPL and contaminated groundwater
- Treatment/ disposal at WTP

Treatment/Removal Plan

- ISTT for NAPL/DBCP Areas (117,214 yd³)
- Excavation of PSAs
 1 & 2 (42,939 yd³
 - unsaturated)
- ISCO for PSAs 3 & 4 (32,151 yd³ saturated)
- Bench/pilot-scale studies

in situ = "in place", in the subsurface ISCO = In situ chemical oxidation ISTT = In situ thermal treatment PSA = potential source area

In-situ Thermal Treatment of NAPL/DBCP Areas

- Addresses Principle Threat Waste
 - (i.e. thermal destruction of NAPL and high contaminant concentrations)
- Greater protection of Pine River and groundwater
- Estimated 12 acres total and likely over 10,000 gallons of NAPL
- Pre-Design work needed:
 - Pre-Design Investigation
- Pilot/bench-scale studies

Remedial Action Costs

Alternative	Total Capital Cost	Total O&M Cost (50-year period)	Total Alternative Cost (Capital + O&M)			
FPS-1	No Action; Not Applicable					
FPS-2	\$94	\$231	\$325			
Selected Remedy	\$143	\$230	\$373			
FPS-5	\$186	\$230	\$416			
FPS-7	\$185	\$295	\$480			

Costs are presented in millions of dollars (no present value analysis) Includes adjacent neighborhood soil excavation Includes \$27M of capital costs to replace City of St. Louis well field

Hot Buttons

Active and angry CAG.

High political interest from Senator Carl Levin, Senator Debbie Stabenow and Congressman David Camp.

May 2012 - Dead robins found in residential yards with lethal levels of DDE found in brain tissue.

City moving quickly to replace well field with their share of the settlement.

